Novel flow apparatus for investigating shear-enhanced crystallization and structure development in semicrystalline polymers
نویسندگان
چکیده
An instrument to study the effects of shearing on the crystallization process in semicrystalline polymers is described. It can impose transient stresses similar to those encountered in polymer processing and provides in situ monitoring of microstructure development during and after cessation of flow. Box-like wall shear stress profiles ~rise and fall times under 50 ms with maximum wall shear stress on the order of 0.1 MPa! can be applied for controlled durations. A unique feature of our device is that it accommodates a wide variety of real-time probes of structure such as visible and infrared polarimetry and light and x-ray scattering measurements. The design also allows us to retrieve the sample for ex situ optical and electron microscopy. Data are acquired with millisecond resolution enabling us to record the extent of shear deformation of the polymer melt during the pressure pulse. Our device works with small sample quantities ~as little as 5 g; each experiment takes ;500 mg) as opposed to the kilogram quantities required by previous instruments capable of imposing comparable deformations. This orders-of-magnitude reduction in the sample size allows us to study model polymers and new developmental resins, both of which are typically available only in gram-scale quantities. The compact design of the shear cell makes it possible to transport it to synchrotron light sources for in situ x-ray scattering studies of the evolution of the crystalline structure. Thus, our device is a valuable new tool that can be used to evaluate the crystallization characteristics of resins with experimental compositions or molecular architectures when subjected to processing-like flow conditions. We demonstrate some of the features of this device by presenting selected results on isotactic polypropylenes. © 1999 American Institute of Physics. @S0034-6748~99!04504-9#
منابع مشابه
Simultaneous birefringence, small- and wide-angle X-ray scattering to detect precursors and characterize morphology development during flow-induced crystallization of polymers.
An experimental configuration that combines the powerful capabilities of a short-term shearing apparatus with simultaneous optical and X-ray scattering techniques is demonstrated, connecting the earliest events that occur during shear-induced crystallization of a polymer melt with the subsequent kinetics and morphology development. Oriented precursors are at the heart of the great effects that ...
متن کاملDeformation-induced crystallization and associated morphology development of carbon nanotube-PVDF nanocomposites.
Poly(vinylidene fluoride) (PVDF) is a semicrystalline thermoplastic polymer that is of interest for sensor, actuator and biomedical applications because of its piezoelectric and pyroelectric properties, as well as outstanding mechanical and chemical properties. Although it is known that the shear-induced crystallization behavior of nanocomposites can be significantly affected by the presence of...
متن کاملEffects of Multiwalled Carbon Nanotubes on the Shear-Induced Crystallization Behavior of Poly(butylene terephthalate)
The effects of the incorporation of multiwalled carbon nanotubes (MWNT) with a diameter range of 10-30 nm on the shear-induced crystallization behavior of poly(butylene terephthalate) (PBT) were investigated under myriad shearing and loading conditions employing principally the small-amplitude oscillatory shear flow. Upon shearing, the presence of MWNTs leads to the crystallization of the PBT n...
متن کاملCrystalline and Spherulitic Morphology of Polymers Crystallized in Confined Systems
Due to the effects of microphase separation and physical dimensions, confinement widely exists in the multi-component polymer systems (e.g., polymer blends, copolymers) and the polymers having nanoscale dimensions, such as thin films and nanofibers. Semicrystalline polymers usually show different crystallization kinetics, crystalline structure and morphology from the bulk when they are confined...
متن کاملLinear Shear Response at Strongly Adsorbing Surfaces
The linear-response effective shear moduli of polymer melts confined between strongly adsorbing surfaces (parallel plates of mica) was studied as a function of the excitation frequency. Linear response (achieved with shear amplitudes of e 2 A) implies that measurements did not perturb the film structure. The measurements employed a surface forces apparatus modified for dynamic mechanical shear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999